Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 18(21)2021 10 20.
Article in English | MEDLINE | ID: covidwho-1480743

ABSTRACT

The impact of the lockdown, during the period from March to June in 2020, upon the air quality of the Basque Country in northern Spain is analyzed. The evaluation accounts for the meteorology of the period. Daily and sub-daily analysis of aerosol and ozone records show that the territory was repeatedly affected by episodes of pollutants from outer regions. Three episodes of PM10 and ten of PM2.5 were caused by transported anthropogenic European sulfates, African dust, and wildland fires. The region, with a varied orographic climatology, shows high and diverse industrial activity. Urban and interurban road traffic of the region decreased by 49% and 53%, respectively, whereas industrial activity showed a lower reduction of 20%. Consequently, the average concentrations of NO2 in the cities during the period fell to 12.4 µg·m-3 (-45%). Ozone showed up to five exceedances of the WHOAQG for the daily maximum 8-h average in both rural and urban sites, associated with transport through France and the Bay of Biscay, under periods of European blocking anticyclones. However, averages showed a moderate decrease (-11%) in rural environments, in line with the precursor reductions, and disparate changes in the cities, which reproduced the weekend effect of their historical records. The PM10 decreased less than expected (-10% and -21%, in the urban and rural environments, respectively), probably caused by the modest decrease of industrial activity around urban sites and favorable meteorology for secondary aerosol formation, which could also influence the lower changes observed in the PM2.5 (-1% and +3% at the urban and rural sites, respectively). Consequently, in a future low NOx traffic emission scenario, the inter-regional PM and ozone control will require actions across various sectors, including the industry and common pollution control strategies.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2 , Spain
2.
Sci Total Environ ; 779: 146380, 2021 Jul 20.
Article in English | MEDLINE | ID: covidwho-1135564

ABSTRACT

We offer an overview of the COVID-19 -driven air quality changes across 11 metropolises in Spain with the focus on lessons learned on how continuing abating pollution. Traffic flow decreased by up to 80% during the lockdown and remained relatively low during the full relaxation (June and July). After the lockdown a significant shift from public transport to private vehicles (+21% in Barcelona) persisted due to the pervasive fear that using public transport might increase the risk of SARS-CoV-2 infection, which need to be reverted as soon as possible. NO2 levels fell below 50% of the WHO annual air quality guidelines (WHOAQGs), but those of PM2.5 were reduced less than expected due to the lower contributions from traffic, increased contributions from agricultural and domestic biomass burning, or meteorological conditions favoring high secondary aerosol formation yields. Even during the lockdown, the annual PM2.5 WHOAQG was exceeded in cities within the NE and E regions with high NH3 emissions from farming and agriculture. Decreases in PM10 levels were greater than in PM2.5 due to reduced emissions from road dust, vehicle wear, and construction/demolition. Averaged O3 daily maximum 8-h (8hDM) experienced a generalized decrease in the rural receptor sites in the relaxation (June-July) with -20% reduced mobility. For urban areas O3 8hDM responses were heterogeneous, with increases or decreases depending on the period and location. Thus, after canceling out the effect of meteorology, 5 out of 11 cities experienced O3 decreases during the lockdown, while the remaining 6 either did not experience relevant reductions or increased. During the relaxation period and coinciding with the growing O3 season (June-July), most cities experienced decreases. However, the O3 WHOAQG was still exceeded during the lockdown and full relaxation periods in several cities. For secondary pollutants, such as O3 and PM2.5, further chemical and dispersion modeling along with source apportionment techniques to identify major precursor reduction targets are required to evaluate their abatement potential.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2 , Spain
SELECTION OF CITATIONS
SEARCH DETAIL